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STATISTICAL PRECISION AND ROBUSTNESS OF THE AMSAA CONTINUOUS
RELTABILITY GROWTH ESTIMATORS

1. INTRODUCTION

1.1 Discussion of Reliability Growth.,

The U.S. Army Materiel Systems Analysis Activity (AMSAA) employs
the Weibull process to model reliability growth during a development test
phase. Development test programs are generally conducted on a phase by phase
basis. The AMSAA reliability growth model is designed for tracking the
reliability within a test phase. This model evaluates the reliability growth
that results from the introduction of design fixes into the system during
test.

Figure 1 iilustrates a typical pattern of growth on a phase by
phase basis.
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Figure 1. Measure of Reliability (e.g., Mean-Time-Between-Failures (MTBF) in
Different Phases.

The AMSAA tracking model addresses the reliability growth within
a particular test phase. Several tracking growth curves may be required to
measure reliability growth over multiple test phases due to the incorporation
of groups of fixes between test phases and/or changes in test phase environments.

Assume the test phase starts at time t = o. Within the test phase,
Tet o<ty <tp<...<ty denote the cumulative test times on the system when design
modifications are made (see Figure 2).




Test Phase 1 Test Phase 2 Test Phase 3

|| |
I |

t=0 t; t2 t3 tg

Figure 2. Times of Design Modifications for Test Phase 2.

The failure rate can generally be assumed to be constant between
the times when design changes are made on the system. Let Aj denote the
constant failure rate during the ith time period [ti.i, tij] between modifica-
tions (see Figure 3).
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Figure 3. Failure Rates Between Modifications.

The constant failure rate assumption during [tj.1, tj] implies that
for this interval, the times between successive failures follow the exponential
distribution F(x) =1 - exp (-1jx), x>0.

The AMSAA tracking model approximates the step-wise failure rate
function shown in Figure 3 by a smooth curve. The parameters of this curve
are estimated, based upon the failure data observed during the test phase.




1.2 Objectives of Our Study.

The objectives of our study are to:

a. Study the statistical precision of the AMSAA MIL-HDBK-189
(Reference 1) mean time between failure (MTBF) estimators M-HAT and M-BAR.

b. Study robustness, i.e., the effect on estimator statistical
precision due to discrete configuration changes (i.e., the step-wise dis-
continuous faibure rate curve).

2. ESTIMATION PROCEDURES ANALYZED

In the subsequent sections, we shall define several important statistical
properties of reliability estimators. We shall then study these properties
for the MIL-HDBK-189 reliability growth estimation procedures applied to
time-terminated testing.

The data used for the analysis consists of the N successive failure
times f, < f, < f, < ... <f, which occur during a test phase of duration T.
The method of maxfmum 1ike1¥hood utilized in the MIL-HDBK-189 estimation
procedure provides the estimate of the shape parameter B as

A N
8 =

N
N!n'l‘-)_!-nf,i
=1

where £n denotes the natural logarithm function.

A

Subsequently, the scale parameter A is estimated by A ‘N/Ta' It

follows that for any time t, the intensity function (failure rate) is estimated
an B9 .

by B(t)= A8t . In particular, this holds for T, the total test
time. The reciprocal of P(T) provides an estimate of the MTBF which
could be anticipated if the system confiqﬁ(atiog_remains 3s it is at time
T. This estimate is denoted by M. Thus M= 1/8(T) = T/NB. For small
sample sizes, it is appropriate to use an unbiased estimator B8 of the shape
parameter B, The estimator B is defined in MIL-HDBK-189 as

N-1 A
B=|—=] B, N2>2.

N
In our study, we defined the estimator B as follows:

”~
8 for N=1
4 -B'
N-1 A
e B for N > 2
N

Notice the estimator irdefined above is unbiased only for N > 2,
3




The estimator M of MTBF can be calculated by using the unbiased
estimator B as follows:

M= T/NBfor N >1

3. PRECISION

Definition: Precision of ah estimator is measured by the Relative Error,

RE, defined by

RE = [M(gst) = Mirrug) 1/ M(TRUE)

where M = ﬁ, calculated from the maximum 1ikelihood estimator % of the
shape p£F§$éter 8 or M(E ) = M, calculated from the unbiased estimator B of
the shape parameter B, §I the above, M(TRUE) denotes the MTBF at the end

of the test time.

Since M( is a random varjable, RE is a random variable and so we can
consider its E?Itribution. This distribution can be simulated by using data
generated from the AMSAA continuous failure-rate curve,

It has been found that the probability of achieving a specified precision
(i.e., specified relative error) depends solely upon the expected number of
failures (see Appendix A). In fact, an analytical expression in terms of the
expected number of failures can be found for the distribution function of the
relative error. However, for our purposes, we found it more convenient and
adequate to use simulation to estimate the probability that the relative
error would be less than or equal to a specified value.

In our study we simulated 5,000 failure historiﬁg for estimating the
probability of achieving a specified precision with M and M. The estimated
probabilities were conditioned on the set of failure histories that had at
least one failure. For each simulation run, the number of failures N and
cumulative failure times f,, f,, fo, ... , f, were recorded. The total test
time T was chosen to be 1.600 ﬁouq%, 5,000 hgurs. and 10,000 hours. For each
test length, the MTBF estimators, M and M, were calculated and, thereby, the
distribution of relative error was ofjtained to analyze the behaviour of the
MTBF estimators. It was found that M and M behave in the same way,
especially when the expected number of failures is moderate to large (see
Figures 4 and 5).

4. ROBUSTNESS

Definition: Robustness is defined to be the ability of an estimator to
perform well even when the underlying assumptions are violated.

For the purpose of our study, we considered a class of step functions which
were compatible with the AMSAA tracking model and whose discreteness could be
simply characterized (see Appendix C). In the step function construction, the
steps represent the constant failure rates over different configurations. By
simulation the failure data were generated from the step function failure
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/N
rate curves, and then MIL-HDBK-189 estimators M and W were computed as in
Section 2. For both estimators, the distributions of RE were computed. As
defined in a previous section, the RE is:

RE = [M(gST) = M(TRUE) |/M(TRUE)

For the step function construction, M is the MTBF of the system's last
configuration. From the simulation rLIB9El for the discrete failure rate
curve, it was observed that the probability of achieving a specified precision
strongly depends upon the expected number of failures and weakly upon_the
number of configurations for about five or more configurations (see Figures 6
and 7). Notice that the M estimator behaves in the same way. It is important
to note that the probability of achieving a specified precision for a finite
number of configurations rapidly approaches the probability obtained for the
smooth AMSAA failure rate curve, as the number of configurations increases.

5.  APPLICATIONS

The following computational examples will show how to use the relation-
ship between the probability of achieving a specified precision and the
expected number of failures to analyze an idealized planning curve.

Computational Examples.

a. Determine the amount of test time to achieve a specified precision
with a given probability.

As an example of this type of problem, we shall calculate the amount of
test time required to ensure with a probability of 0.80 that the MIBF esti-
mator ¥ will be within 20 percent of the true (unknown) MTBF, M(TRUE) -

Typically, one attempts to develop an idealized growth curve that will
grow to a desired value, Mg, This value, Mf, may be the required MTBF, or it
may be a value higher than the required MTBF. The latter case will occur
when one is required to demonstrate the desired system's MTBF at a specified
confidence level. In either event, we will assume in this example that the
end point of the planning curve has been determined and denoted by Mf.
Assume we actually grow along the idealized curve to the end point after T
hours. Then MSTRUE) will equal M. In this example, we wish to
cglculate a value for T that will ensure with a probability of 0.80 that
|M - M(TRUE) | < (0.20) M(TRyg). This value of T depends on the
expected number of failures associated with the idealized growth curve. The
expected number of failures required to ensure a specified relative error
with a probability of 0.80 can be found from a family of “Relative Error vs
Expected Number of Failures" curves (see Appendix B).

It cc “e shown that the expected number of failures, E(F), may be
expressec -

E(F) = (2/(1-a)) (T/MF)
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Thus for an assumed growth rate, for example, a« = 0.2, specified precision
= 0.2 and M. = 168 hours, we see from Figure 9, Appendix B, that E(F) = 93
and T may be calculated as follows:

T = (1-a) (M) (E(F))
(1 - 0.2) (168) (93)

12499.2 hours

Notice that for a given Mp and E(F), there is a linear relationship between
the test time, T, and the growth rate, a. The idealized growth curve that
corresponds to the specified growth rate of 0.2 and that grows to the desired
MTBF, Mg = 168 hours in an amount of time, T = 12499.2 hours can be completely
specified by using the following relationship:

E(F) = ATB where g

1l -«

Solving for X, we obtain,

A = (E(F))T-38
The equation of the idealized growth curve is now completely specified.

b. For a given amount of test time T and MTBF value Mg to be achieﬁgd
at the end of test time T, what precision (i.e., relative error) of the
estimator can be ensured with a specified probability for a stated growth
rate. '

In our example, the given amount of test time will be T = 3542 hours and
Mg will be taken to be 197 kours. We wish to calculate the precision of the

estimator that can be achieved with a probability of 0.80 for a growth
curve with growth rate a = 0.3.

The expected number of failures, E(F), can be calculated to be 26 by
using one of the following formulas.

£(F) = (1/(1-a); (T/Mp)
or
E(F) = AT =T (1 - @)
From Figure 9, Appendix B, we see that PROB (RE < 0.36) = 0.80.
6.  CONCLUSIONS
From Section 3 regarding precision, we conclude the following:

a. The probability of achieving a specified precision increases as the
expected number of failures increase.

b. The precision of'ﬁ and M is essentially the same.

10




¢. It is important to choose idealized plannin

' Lt C g curve parameters (7T

to obt@xn adequate precision (i.e., REg) for the estimator at the desirgd’ =)
probab111ty.1¢ve1. In-part1cu1ar, we should state the specified precision

(i.e., specified relative error), REg, and probability level, PR, where

PROB | =-----=-cmemcemenas < REg |= PR

d. For a given idealized planning curve and test time, one can calculate

the risk that the estimate will not be within a i fi
nate specified per
MTBF, e.g., for the specified percent = 20 perceng percent of the true

Risk = PROB ( |M(gsT) - M(TRUE)] >0.20 M(TRUE))

e. This study emphasizes the need to include the confidence bounds on
the true MTBF when presenting evaluations based on the MIL-HDOBK-189 MTBF
estimators. It could be misleading to only present point estimates in cases
where the probability of obtaining good precision is low.

From Section 4 regarding robustnesé, we conclude that:

a. The precision of MIL-HDBK-189 estimators strongly depends on the
expected number of failures.

b. The robustness of M and M is essentially the same.

c. For a small expected number of failures, although the probability
of achieving a specified precision is low, it is robust with respect to the
number of configurations.

d. For a high expected number of failures, the probability is not
robust for a small number of configurations. This emphasizes the need for
instituting Test, Analyze, and Fix (TAAF) procedures for long duration growth
programs when the expected number of failures is high.

1 The next page is blank.
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APPENDIX A
DISTRIBUTION OF RELATIVE ERROR

In this appendix, we shall obtain the distribution function of the
relative error, RE, where RE is defined as in Section 3. It will be seen
that the distribution function is governed by only one scalar parameter, the
expected number of failures for the reliability growth test.

For a time terminated growth test of duration T, the AMSAA continuous
model assumes the failure process £N§|0<t<T} is a nonhomogeneous Poisson process
with intensity function p(t) = At (x>0, 8>0). The variate N, denotes
the cumulative number of failures through test time t. The expected value of
Nt, denoted by E(Nt), is given by

t
E(Ng) =of p(s)ds = atB (1)
for t>0.

Nt
1 In(T/f5)
i=1

Let W=

where f; denotes the cumulative test time to the ith failure. The sum is
defined'to be zero when Nt=0. In Reference 2, the distribution of W
conditioned on Ny=n>1 is derived. This d1str1but1on can be used to obtain
the distribution of RE.

Let n>1 and let W, denote W conditioned on Nt=n. Define fw to be the
density function of Wh. In Reference 2, it is shown that

(sw)ﬂ-1e°8” 8

fwn(w) T ecoveovsscscces fOr u>0
(n-1)!
=0 for W<O0.

To further consider the distribution of W,, let G(r,s) denote a gamma
random variable with density function

1
g(xX) ® comemnn xT=le=x/s for x>0
str(r)
=0 for x<0

where r>0 and s>0.

Thus, W, ~ G(n,s"1).
with Zr degrees of freedom, denoted by
6(r,s) = (s/2) x5, (2)

15

We may also expresg W, in terms of a Chi-Square variate
2 To do so, we note




Thus by (2), with r=n and s=p-1,
un ~ (1/28) x%n (3)
Recall that the maximum likelihood estimate (MLE) for g is given by

Nt
% - NT/) In(T/E) (4)
i=

-

A A A
Let B and ﬁn denote the variates B and MTBF MLE M conditioned on N7 = n>1,
respectively. Then by (4), -

A n
Bp = ———— (5)
Wn

' a

Recall M = T/BNT and thus

A A

Mn = T/Bnn (6)
Let M = 1/o(T), the instantaneous MTBF at the end of the growth program.
Then, by (5),

A

(AT8/n) (8/8,)

BW
(ATB/n) (-—3-)
n
ATB
5;5 (28Wp) (7)

Using (7) and (3) we obtain

A
Mp/M

B/ = ;—T-Z 4 (®)
Next, observe that Ny is a Poisson random variable.
By (1), E(Ny) = aTE. Thus,
k
Pr(Ny = k) = eAT? Ei;iz (9)
for k = 0,i,2,...

where Pr denotes the Poisson probability function. Also note

16




~

M
—-1

M

RE =

(10)

where ﬁ'denotes the MLE for MTBF defined for n>1. Thus, the distribution of
RE is determined by that of fi/M. '

Let F denote the diifribution function of ﬂVM and let F, denote the
distribution function of M,/M-for n>1. Then,

- Pr(N7=n)
F(x) = ] Fp(x) for x>0 (11)
n=1 {1-Pr(N1=0)}

and
F(x) = 0 for x<0.

By equations (8) and (9), we have that Fp(x) and its coefficient in (11)
are solely functions of AT® = E(Ny) for each positive integer n. Thus by
(10), it follows that the distribution of RE is determined by the parameter
E(NT). Furthermore, the distribution function of RE may be evaluated for a
given value of ATE via formulas (10), (11), (8), and (9).

The next page is blank.
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APPENDIX B
SPECIFIED RELATIVE ERROR VS EXPECTED NUMBER OF FAILURES

To generate the “Specified Relative Error vs Expected Number of Failures”
raph, we used the family of “Probability of achieving REg vs REs" curves
?see Figure 8) in which the expected number of failures is constant for a
particular curve. These curves depict the variation in the probability of
achieving the system's true MTBF within a specified precision for the given
expected number of failures.

Most often, we are interested in finding the total test time for a
specified precision, say 0.20, and a given probability, say 0.80. Though it
is possible to accomplish this objective by directly using the family of
curves in Figure 8, it is more convenient to use the graph in Figure 9. To
construct this graph, we draw a horizontal line in Figure 8 at a point corres-
ponding to the given probability, say 0.80. From the points of intersection
between the line and the curves, draw perpendiculars to the horizontal axis
representing the specified relative error (REg), see Figure 10. Record
the specified relative errors corresponding to the points of intersection
between the perpendiculars and the horizontal axis. We know that the expected
number of failures remains constant along a particular curve and it varies
for different curves. In this way, we can collect data representing the
values for the expected number of failures and the corresponding specified
relative errors. Then this information is used to construct the desired
curve, i.e., Figure 9.

21
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CONSTRUCTION OF STEP FUNCTION FAILURE RATE CURVES
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APPENDIX C
CONSTRUCTION OF STEP FUNCTION FAILURE RATE CURVES

The total test time T is divided into s equal size sub-intervals.
For each sub-interval i (i=1,...,s), the constant failure - rate Pi is

defined as the average value of p(t)= At 6-1 over sub-interval i.
This construction is represented graphically for s = 4 in Figure 11.

————— ———
T e e e e o

N p1
[ o]

o —c2,
fxz [ [
= : : 2 -1
= ‘ ’ P(t)=ABt
= ' ' ' L

! ’ ! ’

Z Z 5 .

’ [ ’ [

0 11 12 13 T = ¥y

Pi= HEIGHT OF itw RECTANGLE (i=1,2,3,4)
ti= 1 (0/s) = i(T/4)

Figure 11. Step Function Failure Rate Curve.
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THE_PRINCIPAL FINDINGS

1. The prohability of achfeving e specified precision solely depends
upon the expected number of failures when the failure data are generated
from the AMSAA Continuous failure rate curve.

2. The probability of achieving a specified precision still strongly
depends upon the expected rumber of failures when failure data come from a
.finite number of configurations,

3. Precision and Robhustness of MTBF estimators 9 and M are essentially
the same.

THE MAIN ASSUMPTIONS

1. For the precision part of the study, the failure data are assumed
to be generated from the AMSAA continuous failure rate curve.

2. For the robustness part of the study, the failure data are assumed to
be generated from a finite number of configurations whose overall trend follows
the AMSAA failure rate curve.

3. We studied robustness with respect to the number of configurations hy
choosing equal configuration time periods.

THE PRINCIPAL LIMITATIONS We used (MIL-HDBK-189) MTBF estimators' formulas
under the assumption that failure data are coming from the AMSAA continuous
failure rate curve for the precision part. We used the same formulas to study
robustness with the assumption that failure data are coming from a finite
number of equal configuration time periods.

THE SCOPE OF THE STUDY

This methodology can be used to calculate the required test time associated
with an idealized planning curve to achieve a specified precision with a given
probability.

THE STUDY OBJECTIVE

1. To study the statistical precision of the AMSAA (MIL-HDBK-189) MTBF
estimators Mand M,

2. To study robustness, i.e., the effect on the estimator statistical
precision due to the discrete configuration changes.
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THE BASIC APPROACH

1. To determine the precision of the MIL-HDBK-189 MTBF estimators, we did
5000 simulations to generate a distribution of relative error of the MTBF
estimators. The failure data were generated from the AMSAA continuous failure
rate curve,

2. To determine the robustness, we generated a distribution of relative
error from a finite numher of configurations through 5000 simulations.

REASON FOR PERFORMING THE STUDY

The study results are useful for planning purposes. We can determine the test
time for a probability and a specified precision level,

IMPACT

Reliability growth plan.

STUDY SPONSOR

U.S. Army Materiel Systems Analysis Activity (USAMSAA), RAM Division
PRINCIPAL INVESTIGATORS

Tariq Ziad and Paul Ellner




